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Abstract The power aware design of microprocessors is becoming increasingly
important. Power aware design can best be achieved by considering the
impact of architectural choices on power early in the design process. A
natural solution is to build a power estimator into the cycle simulators
that are used to gauge the effect of architectural choices on performance.
Cycle simulators intentionally omit considerable implementation detail
in order to be efficient. The challenge is to select the details that must be
put back in if the simulator is required to also produce meaningful power
figures. In this paper we propose how to augment a cycle simulator to
produce these power figures.
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1. Introduction

Power dissipation has become a significant constraint in modern mi-
croprocessor design. In many mobile and embedded environments power
is already the leading design constraint. Although it may not be so ap-
parent, it is almost as important in the design of general purpose high-
performance computers [1]. It has become one of the primary design
constraints along with performance, clock frequency, and die size. In
addition to extra heat removal costs, high power consumption in em-
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bedded processors also reduces the battery lifetime. Hence, a mobile
computing system’s quality and reliability could be affected by its high
power dissipation. In case of high performance microprocessors, high
power dissipation leads to thermal issues like device degradation, higher
packaging cost, and reduced chip lifetime.

The elevation of power to a “first-class” design constraint requires
that power estimation be done at the same time as performance studies
in the design flow. Performance analysis for a proposed design is usually
accomplished during the design exploration phase with a cycle simula-
tor. The natural solution would be to augment cycle simulators so that
they can also provide power estimates. This has been done in the case of
three recent simulators [2, 3, 4]. A cycle simulator models the behavior
during each clock cycle of the processor. The goal of these simulators
is to assess the impact on performance of cache and memory organiza-
tions, pipelining, multi-instruction issue, branch prediction, and other
microarchitectural mechanism. The more sophisticated cycle simulators
can boot an operating system and run significant parts of an application
program within a several hour period. This enables the user to observe
the performance under a variety of workloads for billions of cycles. Such
long simulations are necessary to provide the confidence in the result-
ing performance figures. To simulate billions of cycles within a several
hour period requires a high degree of efficiency in the cycle simulator.
Efficiency is achieved by abstracting away the physical behavior of the
microarchitecture — the very details that are required to obtain power
figure. The challenge for architectural power modeling is to add enough
detail back into the simulator so that power estimates are meaningful
without unduly slowing the simulator.

The difficulty of this challenge is apparent from the results that one of
us obtained by calibrating two of the recent power simulators mentioned
above, the Cai-Lim simulator [2] and the Wattch simulator [3]. Figure
1.1 reproduces one of the figures from [5]. It shows power estimates
obtained from two SPEC benchmarks, mk88sim and lisp. Three imple-
mentations of an 8-wide issue processor are examined: 1) an out-of-order
machine with gated clocks; 2) an in-order machine; and 3) a half width
machine, i.e., a 4-wide issue. Clearly the two models give significantly
different results. The accuracy that we can expect is probably much
less that the 10% claimed in [3]. This is not unacceptable for an early
design tool. However, to be useful in the design process a successful
model should indicate the trends accurately. The results in Figure 1.1
show that the two models also give conflicting views on trends. The
Cai-Lim model indicates the in-order machine is the least power hungry,
even allowing for a high level of imprecision in the results. The Wattch
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Figure 1.1. Normalized per cycle power estimation results for 8-wide microarchitec-
tures. The error bars are based upon the 10% accuracy reported by Wattch (4).

model, on the other hand, does not show a clear preference. This paper
will identify the causes of these inaccuracies, and propose how a cycle
simulator can be augmented to correct for them.

The remainder of this paper is organized as follows. The next section
reviews the power metrics required for power aware design. Section 3
discusses existing cycle simulators that measure power, and points out
their weaknesses. Section 4 discusses the requirements needed by a cycle
simulator to produce useful power figures. Section 5 considers the details
of implementing such a power estimator. Section 6 conclude the paper
and identifies some remaining open questions.

2. Power Metrics

There are three components that define the important contributions
to power consumption in CMOS! technology:

P = AOV2f + TAV Lport + Vieak (11)

IWe focus on CMOS because it will likely remain the dominant technology for the next 5-7
years
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The first component is perhaps the most familiar. It measures the dy-
namic power consumption caused by the charging and discharging of
the capacitive load on the output of each gate. It is proportional to the
frequency of the operation of the system, f, the activity of the gates
in the system, A (some gates may not switch every clock), the total
capacitance seen by the gate outputs, C, and the square of the supply
voltage, V. The second term captures the power expended due to the
short-circuit current, Igp0¢, that momentarily, 7, flows between the sup-
ply voltage and ground when the output of a CMOS logic gate switches.
The third term measures the power lost due to leakage current that is
present regardless of the state of the gate.

The first two terms can be lumped as activity based because they
are directly related to the the toggling frequency of the gates in the
circuit. In contrast, the leakage term is unaffected by activity, because
it is governed only by the number of gates and their threshold voltages.
It is only affected by activity in the sense that leakage is reduced to zero
when the gate is turned off. Unfortunately, this also results in any state
in the circuit being lost. Thus to obtain power from the execution of a
cycle simulator it is necessary to tie cycle behavior to activity at the gate
level for the first two terms and to estimate the number of gates that the
microarchitecture requires for the third term. The difficulties associated
with cycle level power estimation arise directly from the difficulty of
calculating these values with any level of accuracy.

If average power consumption were our main concern then the val-
ues for A and f could be calculated by sampling. Sampling would give
us the time to perform more detailed power consumption calculations.
This idea has been proposed in [6]. However, average power values can
hide important details as can be seen in [7]. In this work the energy
dissipation of individual ARM instructions is measured by running each
instruction in a loop and measuring the average current drawn. The
results show very little difference between the energy usage of different
instructions, because the effect of averaging is to smooth out short lived
effects like cache misses and pipeline stalls. In addition, there are two
other power metrics that are important design constraints. The first is
peak power. Typically, systems have an upper limit, which if exceeded
will lead to some form of damage. The second is dynamic power. Sharp
changes in power consumption can result in inductive effects that can
result in circuit malfunction. The effect caused by “di/dt” noise. Equa-
tion 1.1 can be used to monitor peak power and estimate “di/dt” noise,
if a running value of (1.1) is maintained. Sampling can miss these effects.
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3. Previous Work

As we have noted, the abstractions necessary for efficiency make it
difficult to base an accurate power estimation tool on a cycle simulator.
The lack of detailed low-level physical design information such as in-
terconnection capacitance, types of circuits for each microarchitectural
block, clock trees, and I/O pads are among the principal sources of in-
accuracy.

Prior work on microarchitectural level power estimation [2, 3, 4] has
mainly relied on microarchitectural-activity-based calculations. A typi-
cal power dissipation figure for each block used in the target micropro-
cessor is estimated. Then the activity of each block is recorded every
cycle based on the behavior of the cycle simulator. Finally, the power
dissipation of the microprocessor is estimated by combining the activity
with the power figures.

In [3], Brooks et al. utilized detailed analytical power models for array
structures and content addressable memories based on CACTI [8] to es-
timate the power consumption of memory-like microarchitectural blocks.
In [2], Cai et al. introduced a power density model to estimate power
dissipation of each microarchitectural block based on proprietary Intel
design data. In [4], Vijaykrishnan et al. also considered bus transition-
sensitivity by employing a register-transfer level power estimation tech-
nique. The power models for their blocks were implemented as look-up
tables (LUTSs) [9]. They also considered the power dissipation of the I/O
pad and external memory bus.

In these simulators there is no accounting for changes in power due to
data sensitivity. According to [10] and [11], the power consumption of
a microarchitectural block is highly dependent on the input data char-
acteristics applied to it. Figure 1.2 shows power dissipation simulation
results for an 8-bit ALU and an 8-bit multiplier at 100MHz using the
TSMC 0.254m LEDA library, Synopsys Design Compiler, and Prime-
Power. These measurements agree with those in [12]. It can be seen that
the variation in power dissipation is quite significant for different input
patterns, suggesting we should consider data-sensitivity in the power
estimation of microarchitectural blocks.

All but one of the earlier work also ignored power dissipation caused
by accessing the external memory, which usually consumes a significant
amount of power since the I/O pads of the microprocessor typically drive
very large off-chip bonding wires. Furthermore, the earlier work has
ignored power dissipation caused by the clock distribution network and
global interconnect — the internal buses that interconnect the blocks.
This is particularly tricky to do because it requires some notion of the
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Figure 1.2. Power dissipation simulation for a 100 MHz 8-bit ALU and 8-bit multi-
plier. These microarchitectural blocks where designed using the TSMC 0.25um LEDA
library, the Synopsys Design Compiler, and PrimePower. Power is plotted against
the Hamming distance between consecutive inputs to the blocks

layout of processor. However, interconnect is becoming an ever more
significant contributor to power consumption.

Clearly, there are a number of omissions in current cycle simulator-
based power estimation tools that could account for their inaccuracy.
In the next section we will propose a framework for augmenting cycle
simulators so that the omissions can be included.

4. Augmenting a Cycle Simulator for Power
Estimation
4.1 Details omitted from cycle simulators

As we have noted, cycle simulators derive their speed from abstracting
out many of the physical details. We touched on some of the resulting
omissions in the discussion of earlier power estimators. We will illus-
trate the extent of this abstraction by considering SimpleScalar [13], a
cycle-based performance simulator that is widely used and forms the ba-
sis for the earlier power estimators. SimpleScalar simulates a specified
architecture running a particular benchmark and returns performance
in terms of total simulated clock cycles. In order to do this it only needs
to trace address streams and some architectural activity. Examples of
this activity include function unit usage, and the number of cache, TLB,
and branch predictor accesses. These are combined with their respec-
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tive access latencies to calculate the execution times of instructions. The
effect of resource and data hazards is reflected in the access latencies.
Thus cycle counts of program execution are calculated without having
to model the detailed structure of pipelines. The simulator executes the
instructions and stores their results in the simulated register file and
main memory in the issue cycle of instructions interpreted. It simply
advances the simulation clock after calculating the latencies that would
have resulted from the execution of a real multi-issue pipeline.

There is no modeling of the movement of instructions and data be-
tween the various pipeline stages after the issue stage, or between other
microarchitectural blocks. For instance, the fetch stage fetches instruc-
tions from the simulated main memory directly, not from a simulated
L1 instruction cache. The cache is modeled by keeping track of the ad-
dresses of the instructions and noting when they are no longer included
in a list of cache line addresses. When this occurs, a miss penalty is
accounted for, and the cache line list is appropriately updated to reflect
new cache entries and evictions.

To illustrate the effects of abstraction on memory buses, consider how
SimpleScalar models a memory access over a memory bus. SimpleScalar
checks the current memory access status and returns the access latency
and the requested data blocks. The latency is determined from the
number of the memory ports, the number of the requested data blocks,
and whether or not the previous memory access cycle is complete. In real
microprocessors, however, the memory access transaction occurs over
several cycles, and the requested data blocks are transferred from/to the
memory during the pertinent cycles according to the memory transaction
type and the number of the requested data blocks as shown in Figure
1.3.

With only the latency information we have no idea about the details
of the memory transfer cycles such as addresses and data values. This
was also a shortcoming of earlier power estimators — they assumed
that the transaction occurs in the currently accessed cycle regardless
of the access latency, and the characteristics of the transaction cycle.
To correct this, we need a mechanism for tracing data transactions on
buses (internal as well as external) in a cycle accurate way. In order
to provide this mechanism, it is necessary to augment the simulator to
trace data bus streams. This can be accomplished with special routines
at the interfaces of the microarchitectural blocks that capture the cycle
accurate bus transaction cycles. In other words, we need to know what
values are on the internal buses between the microarchitectural blocks
and on the external I/O buses in each simulation cycle, in order to
measure the switching power more accurately.
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transaction of in real microprocessor The function call is the abstraction

In summary, the principal abstraction in cycle simulators is to omit
the modeling of data movements on the internal and external buses be-
tween microarchitectural blocks such as function units, caches, memories
and pipeline stages.

4.2 Power Estimation Methodology

Figure 1.4 shows a proposed methodology for power estimation by
augmenting a cycle simulator. First, target technology parameters need
to be known or estimated — the Berkeley Predictive Technology Model
is an example estimator. Other factors that are needed include the
supply voltages, threshold voltage, and capacitance per area/length and
sheet resistance values of the interconnecting material. In addition, the
microarchitectural specification, target operating frequency, and circuit
design style for each microarchitectural block should be determined as
well.

Second, we need to construct power models for microarchitectural
blocks based on the circuit or sub-system design styles. For example, the
datapath of the microprocessor may be designed as full-custom, through
standard cell synthesis, or by using a datapath compiler. The different
cases require different circuit and power models. We can generate ana-
lytical power models [8, 14], empirical models [15, 16], or by employing
other power macromodeling techniques [12, 17, 18, 19, 20, 21, 22, 23].
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Figure 1.4. A microarchitectural power estimation methodology.

These models need only be developed once. Modeling techniques will be
discussed further in Section 5.3.

Finally, the power estimator calculates the power dissipation of each
microarchitectural block by obtaining the execution statistics from runs
of the cycle simulator.

5. Implementing a cycle-accurate power
estimator

The power dissipation of each microarchitectural block consists of
three components:

1 The switching power of the load capacitance, which is directly
proportional to the number of zero-to-one transitions of outputs
per cycle. The number of transitions on a bus (zero-to-one and one-
to-zero) can be summarized by recording the Hamming distance
between successive bit patterns on that bus. The number of zero-
to-one transitions is half this number on average.

2 The power dissipation of the microarchitectural block caused by
the switching of its inputs, which is approximately proportional to
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the number of transitions of inputs (zero-to-one and one-to-zero)
per cycle. The power dissipation is actually quite specific to each
type of microarchitectural block, and can be characterized in a
LUT indexed by Hamming distance. The LUT could be replaced
by a simple equation or a macromodel.

3 The leakage power from the reverse-biased diode current and sub-
threshold leakage current that are approximately proportional to
the area and the number of the transistors of the microarchitec-
tural block. The last term is no longer negligible as supply voltages
and threshold voltages decrease. We can implement a generic data
structure for power estimation that can handle most of the microar-
chitectural block types by passing as arguments circuit parameters
and LUTs indexed by the Hamming distances for the data on the
input and output buses. This is combined with the switching ac-
tivities from the runs of the simulator — the switching activities
define the Hamming distances. As mentioned earlier, the LUT
entries are calculated off-line. There are a number of well-known
techniques for this, see [12, 17, 18, 19, 20, 21, 22, 23].

Thus, we need to implement an interface between the cycle simulator
and the power estimator to collect the appropriate switching activities.

5.1 Implementation of the data structure and
microarchitectural block models

Figure 1.5 shows a generic data structure for the architectural power
estimators that will support flexible power models, and that will interface
to SimpleScalar.

The circuit parameters in the data structure include a circuit design
style — dynamic or static, a supply power voltage, an operating fre-
quency, and complexity information such as the number of estimated
transistors and area of the microarchitectural block.

The use of dynamic vs. static circuits affects the power dissipation
characteristics of the block significantly. In current state-of-the-art mi-
croprocessors, multiple supply voltages are often fed to the chip. For
example, 2.5V might be supplied to the internal core, and 3.3V to the
I/O pads. Therefore, the data structure for each microarchitectural
block should contain supply voltage information. In addition, some pe-
ripherals, which would typically be modeled as microarchitectural blocks
may be integrated into the chip, and may operate at different frequencies
as well. Thus, we support an independent operating frequency for each
functional unit as well as a supply voltage. Furthermore, the complex-
ity information, in particular the number of the transistors of the block
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Figure 1.5. Generic data structure for a microarchitectural block.

determines leakage power, and is important for estimating the clock tree
capacitance.

A microarchitectural block is modeled as a block with input and out-
put buses (the internal buses between the blocks), see Figure 6. The
input and output buses are implemented in the simulator as stream
buffers in order to support Hamming distance calculations over com-
plete bus transactions. In the case of blocks like ALUs, these buffers
need only have one stage, but for memories and I/O buses they may
need to be much deeper (recall Figure 1.4). These buffers are filled by
the interface routines of the cycle simulator. In order to estimate the
power of each block, we employ a method based on Hamming distance
[12], as noted earlier. However, the information in the data structure
does not limit us to Hamming distance methods. The availability of
input and output statistics permits the use of other dynamic estimation
techniques [22, 23].

In order to analyze Hamming distance or zero-to-one transition ac-
tivity we have to keep the previous bus stream values. However, there
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are different types of bus states to consider — unchanged , pull-up, pull-
down, and high impedance. For instance, a directional bus usually keeps
its value until the output driver of the microarchitectural block drives a
different value on the bus, while a bi-directional bus that is in the high
impedance state when it is not driven by any block has an unpredictable
value due to leakage current. This value becomes predictable if keeper
logic is used to prevent excessive current flow due to leakage current
of the bus. Accounting for all these cases is not difficult, but it does
require that we have to specify the bus type when we initialize the data
structure shown in Figure 1.7.

Finally, microarchitectural blocks can be decomposed into more de-
tailed blocks to increase the granularity and the accuracy of the power
estimation. For instance, a cache can be viewed as one microarchitec-
tural block, or split into decoders, tag arrays, data arrays, comparators,
sense amplifiers, and output drivers, which we can model as a collection
of separate blocks, assigning different power models to each block, see
Figure 1.8.

5.2 Cycle simulator and power estimator
interface

In order to track the bus streams for each block we need to implement
an interface or API to collect the stream information for each microar-
chitectural block from the cycle simulator. The relative timing of the
bus streams are dependent on the microarchitectural block and its cur-
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rent state. For example, reads and writes to a memory block create
quite different bus switching activities, which are further modified by
the occurrence of a cache miss.

Furthermore, as mentioned before, the cycle simulator often simulates
the logical behavior of a microarchitectural block in a single cycle and
then uses latency and hazard information to model the performance
impact of the microarchitectural activities that may occur over several
cycles. Figure 1.9 illustrates how stream information should be retained
to correctly model the real data activity occurring on the bus.

5.3 Power Modeling Techniques

The estimation of the power dissipation is quite straightforward if
we know the data activity of the microarchitectural block so that we
can derive the effective capacitance of the block. In this section we
will examine in more detail how we can derive the effective capacitance
for several important microarchitectural blocks, the internal buses that
connect them, and the clock tree that synchronizes them.
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5.3.1 Memory models. A microprocessor may contain many
memory blocks including caches, TLBs, register files, reorder buffers,
etc. Their fraction of the total area and their contribution to power
consumption in a microprocessor can be as high as 40% [14]. Most
memory structures consisting of five parts — an SRAM cell array, a
row decoder/wordline driver, a column decoder, a sense amplifier, and
a precharge circuit, see Figure 1.10.

The power consumption of most memory blocks can be estimated
quite accurately by using a cache access time estimation model. Such
models typically derive the access time from estimates of the capaci-
tance and the resistance of the critical path during memory reads or
writes. We can use these capacitances to obtain estimates of the power
or energy consumption. Two examples are CACTI [8] and the analytical
equations proposed in [14]. Both CACTI and the model in [14] compute
the physical capacitance of each stage of the memory.
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We illustrate the method using CACTI. The total switching capaci-
tance of a bit line Cpjyror represented in (1.2) consists of the metal line
capacitance Cp;; and the drain capacitance of transistors 1, @p, and
(Qpe in Figure 1.10.

Caitrot = Nrows * (Ca,g, + Chit) + Ca,q, + Ca,Q,. (1.2)

Similarly, the total switching capacitance of a word line shown in (1.3) is
composed of the metal line capacitance Cy,-q and the gate capacitance
of the pass gates 1 and Q.

CWordTot = Ncols ' (2 ' Cg,Ql + C’word) (13)

Therefore, the power dissipation of the SRAM array can be represented
by (1.4). In the power dissipation of the bit line Vp;iswing should be
used instead of Vpp because the voltage swing of the bit line is less than
the full supply voltage.

Psramarray = f* (Neots * CBitTot - VBitswing + Cwordrot - Vop?) (1.4)



Challenges for Architectural Level Power Modeling 17

In addition, there are two types of the bit lines used in the memory
blocks. One is a single-ended bit line structure, and the other is a double-
ended bit line structure. The bit lines dissipate most of the power in the
memory structure. The power dissipation of the double-ended bit line
memory structure is independent of the data activity of the memory cell
because the operation of each bit line is complemented regardless of the
contents of the SRAM cells.

In case of the single-ended bit line, its power dissipation of the bit lines
depends on the values read from the cells. Thus we have to account for
its data activity of the bit lines

5.3.2 Datapath components. A datapath typically contains
ALUs, shifters, multipliers, register files, etc. Although most of datapath
components also have very regular structure it is not a trivial problem
to estimate the power dissipation because the effective switching capaci-
tance is a complex function of the applied input sequences, and can vary
non-linearly with the bit-width of the datapath.

Figure 1.11 represents the flow for the microarchitectural block power
estimation. Either, we re-use small datapath component models, e.g.,
4-bit, 8-bit, and 16-bit width of transistor- or gate-level existing designs
or we generate combinational macro models for the datapath compo-
nents using an HDL, a design library, and a synthesizer [20]. Second,
we measure the average power dissipation for each possible Hamming
distance by applying a large number of input sequences that have the
same Hamming distance. Finally, we can extrapolate the results with
regression-based techniques [17] to obtain the power model for 32-bit or
64-bit width datapath component.

This power modeling methodology has several advantages over other
estimation techniques used in earlier power estimators. First, we can
consider the effect of the technology parameters directly on the power
dissipation because we measure the power consumption of the small
block with the power simulator and the technology parameters.

Second, since the datapath components have a very regular structure
we can reduce the power model construction time by using regression-
based technique. The regularity makes it possible to apply regression-
based estimation techniques without losing much accuracy.

Third, the Hamming distance based power estimation is simple to
apply to the microarchitectural simulation if one traces the change of the
input/output values presented to the blocks (the bus streams) during a
simulation run.
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5.3.3 Random logic and interconnections. There is no
exact way to predict, in the early design phase, the form of the random
logic used for control. However, there are some empirical models based
on Rent’s rule [15, 16], which rely on parameters such as transistor count,
area, the number of the pins, logic depth, etc. These model parameters
can be determined based on similar existing designs.

Interconnection information cannot be determined at the microarchi-
tectural design stage, but we can estimate its length by rough floorplan-
ing. Its capacitance can be estimated by:

Clnt = Llnt ' Wlnt : CArea +2- (Llnt + Wlnt) : CLength (15)

In (1.5) Cpyy is the interconnection capacitance of the internal input and
output buses between the microarchitectural blocks, Ly,; is the inter-
connection length, Wiy, is the width of the interconnection line, C4yeq
is the capacitance per unit area, and Cre,gs is the capacitance per unit
length of the interconnection layer. The estimated interconnect capaci-
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tance for the interconnect between each major microarchitectural block
is assigned to the data structure associated with each microarchitectural
block. This is combined with the simulation statistics of the internal
bus transition activity derived from the cycle simulation to estimate the
power dissipation of the interconnect bus, see (1.6).

Pr,y = HammingDist - f - Crpy - VDD2 (1.6)

5.3.4 Clock distribution tree. According to [24] the power
dissipation of the clock distribution network can be responsible for 40%
of the total power dissipation in high performance microprocessor design.
As the chip size and the clock frequency increase the fraction of the
power dissipation by the clock distribution network is becoming ever
more significant.

There are several clock distribution styles. The most common are the
H-tree and the balanced H-tree. The nodes of the clock tree includes all
clocked transistors in the microprocessor core logic and memory, as well
as the clock wiring and the clock driver. In addition, the clock network is
distributed over the entire chip and therefore related to the overall chip
area. The total load capacitance for the clock distribution tree contains
three components: clock tree wiring, random logic and memory clocked
nodes [15]:

Cekrot = Cotkwire + CcikLogic + CcikMemory (1.7)

In (1.7) Copwire 1s a function of the interconnection capacitance of clock
wire per length Crp/pengin, the total area Are of the estimated chip die
size, and the number of the levels in the clock distribution tree, which
in turn is a function of the target clock skew and chip die size, see (1.8)
and Figure 1.12:

Ntree
- 1
Couwire = CInt/Length - Arot - z; 2t W (18)
1=
The effective switching capacitance of the clock distribution tree Coirp s
includes the switching capacitance of the chain of the inverters forming
the clock driver. This can be represented by:

1
Cewrrr = Cowwrot - <— + 1) 1.9
I ot 1- l/aclkdri'uer ( )

where ackdriver 1S the optimal stage ratio for the clock driver. From
(1.7),(1.8), and (1.9) the total power dissipation of H-tree clock distri-
bution network can be represented in terms of Coyppy as follows:
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Figure 1.12. An example of H clock distribution network.

Pou. = fow - Cowrrr Vin (1.10)

6. Conclusion and Future Work

Microarchitectural level tools are important for power estimation dur-
ing the early design phase of microprocessor systems, particularly as we
continue to explore new low power optimization techniques. In earlier
work we found that recent power estimation tools are inaccurate enough
that they may lead designers to make the wrong choices when deciding
between several design trade-offs. In this paper we list the potential
sources of error that could contribute to this inaccuracy. They are con-
nected with the abstractions that are employed by cycle simulators. We
propose a detailed methodology for reinstating some of the details lost
in the abstraction.

Several important questions remain. The first is how much the power
modeling slows simulation. We have implemented a preliminary version
of this power estimation simulator on top of SimpleScalar and have ob-
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served slow downs of about a 2x. The second question is how much
accuracy is regained by our proposed methodology. This requires cali-
bration against existing chips and remains for future work.
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